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Lecture 2 Highlights 
Phys 402 

 
Orbital Angular Momentum 

We concluded our review of Phys 401 with a discussion of orbital and spin angular 
momentum.  Angular momentum is defined as 𝐿𝐿�⃗ = 𝑟𝑟 × 𝑝⃗𝑝, and as such depends on the 
choice of origin.  We take the origin as the force center for the Coulomb central force in 
the “relative problem” that results from the 2-body problem (see problem 1 in HW 2).  In 
quantum mechanics we consider the angular momentum to be an operator of the form 𝐿𝐿��⃗ =
𝐿𝐿�𝑥𝑥𝚤𝚤̂ + 𝐿𝐿�𝑦𝑦𝚥𝚥̂+ 𝐿𝐿�𝑧𝑧𝑘𝑘�, where 𝐿𝐿�𝑥𝑥 = 𝑦𝑦�𝑝̂𝑝𝑧𝑧 − 𝑧̂𝑧𝑝̂𝑝𝑦𝑦, etc. and the momentum operator is 𝑝̂𝑝𝑖𝑖 = −𝑖𝑖ℏ 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
, 

where 𝑖𝑖 = 1, 2, 3 represent the 3 Cartesian coordinates 𝑥𝑥1 = 𝑥𝑥, 𝑥𝑥2 = 𝑦𝑦, 𝑥𝑥3 = 𝑧𝑧.  Recall that 
the linear position and momentum operators obey these commutation relations: �𝑥𝑥�𝑖𝑖, 𝑝̂𝑝𝑗𝑗� =
𝑖𝑖ℏ𝛿𝛿𝑖𝑖𝑖𝑖, where 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta.  Note that “𝑖𝑖” appears in two different forms in the 
commutation relation.  It appears as a subscript and also as the square root of −1.  You are 
expected to know the meaning of “𝑖𝑖” from the context!  We also have �𝑥𝑥�𝑖𝑖, 𝑥𝑥�𝑗𝑗� = 0 and 
�𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝𝑗𝑗� = 0.  From these commutation relations you can derive those for the components 
of the angular momentum: �𝐿𝐿�𝑥𝑥,𝐿𝐿�𝑦𝑦� = 𝑖𝑖ℏ𝐿𝐿�𝑧𝑧, and all cyclic permutations (i.e. x-y-z, y-z-x, 

z-x-y).  These non-zero commutators mean that the components of 𝐿𝐿��⃗  are incompatible 
operators.  One cannot form simultaneous eigenfunctions of 𝐿𝐿�𝑥𝑥, 𝐿𝐿�𝑦𝑦, and 𝐿𝐿�𝑧𝑧. 

However, consider the angular momentum squared operator: 𝐿𝐿�2 = 𝐿𝐿��⃗ ∙ 𝐿𝐿��⃗ = 𝐿𝐿�𝑥𝑥
2 +

𝐿𝐿�𝑦𝑦
2 + 𝐿𝐿�𝑧𝑧

2.  This operator commutes with any of the three components: �𝐿𝐿�2, 𝐿𝐿�𝑖𝑖� = 0.  Hence 

one can form simultaneous eigenfunctions of 𝐿𝐿�2 and any one component of 𝐿𝐿��⃗ .  By 
convention we choose this to be the z-component operator.  The eigenfunctions are the 
spherical harmonics: 𝐿𝐿�2𝑌𝑌ℓ,𝑚𝑚 = ℓ(ℓ + 1)ℏ2𝑌𝑌ℓ,𝑚𝑚 and 𝐿𝐿�𝑧𝑧𝑌𝑌ℓ,𝑚𝑚 = 𝑚𝑚ℏ𝑌𝑌ℓ,𝑚𝑚.   

In analogy with the quantum harmonic oscillator we can think of quantum angular 
momentum in terms of a ladder of states.  We can define ladder operators as 𝐿𝐿�+ = 𝐿𝐿�𝑥𝑥 +
𝑖𝑖𝐿𝐿�𝑦𝑦 and 𝐿𝐿�− = 𝐿𝐿�𝑥𝑥 − 𝑖𝑖𝐿𝐿�𝑦𝑦.  This can be written more compactly as 𝐿𝐿�± = 𝐿𝐿�𝑥𝑥 ± 𝑖𝑖𝐿𝐿�𝑦𝑦.  One can 
examine the 𝐿𝐿�2 and 𝐿𝐿�𝑧𝑧 eigenvalues of the ladder operators applied to the 𝑌𝑌ℓ,𝑚𝑚.  The results 
are: 𝐿𝐿�2�𝐿𝐿�± |ℓ,𝑚𝑚⟩� = ℏ2ℓ(ℓ + 1)�𝐿𝐿�± |ℓ,𝑚𝑚⟩�, and 𝐿𝐿�𝑧𝑧�𝐿𝐿�± |ℓ,𝑚𝑚⟩� = (𝑚𝑚 ± 1)ℏ�𝐿𝐿�± |ℓ,𝑚𝑚⟩�, 
showing that the 𝐿𝐿�± moves the state up or down the ladder of states labeled by the z-
component of angular momentum quantum number.  (Note that we are using the ket |ℓ,𝑚𝑚⟩ 
as a stand-in for the spherical harmonics 𝑌𝑌ℓ,𝑚𝑚)  We expect this ladder of states to be finite, 
for a given ℓ, because the component of a vector can never exceed it’s length.  By 
calculating the length of the ket 𝐿𝐿�± |ℓ,𝑚𝑚⟩ we can find the relevant constraint on values of 
𝑚𝑚 for a given ℓ.  One can show that the scalar quantity �𝐿𝐿�± |ℓ,𝑚𝑚⟩�

2
 is equal to 

ℏ2[ℓ(ℓ + 1) −𝑚𝑚(𝑚𝑚 ± 1)] ≥ 0, and this must be either positive or zero.  This is satisfied 
as long as the z-component quantum integer falls in this set of values: −ℓ ≤ 𝑚𝑚 ≤ ℓ.  Thus 
the ladder of states associated with orbital angular momentum has these important 
properties: 

1) The ladder is centered on 𝑚𝑚 = 0. 
2) The ladder is symmetric about 𝑚𝑚 = 0. 
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3) The ladder has steps in units of ℏ. 
Note that there are total of 2ℓ + 1 steps in the ladder, which is an odd number for the 
allowed values of ℓ in the hydrogen atom.  For example, a hydrogen atom making a 
transition from a 2p to 1s state will have its spectral line split into 3 lines in the presence 
of an external magnetic field.  This splitting is proportional to the magnetic field.  This 
Zeeman effect is due to the interaction between the external magnetic field and the 
magnetic moment created by the current loop of the electron in the 2p state.  The z-
component of that magnetic moment has three different values, depending on the magnetic 
quantum number 𝑚𝑚.  We will study the Zeeman effect in detail later in the semester. 
 Note that the length of the angular momentum vector has the strange value of �𝐿𝐿�⃗ � =
�ℓ(ℓ + 1) ℏ.  The maximum z-component of 𝐿𝐿�⃗ , namely the 𝐿𝐿�𝑧𝑧 eigenvalue is ℓℏ.  Hence 
the angular momentum vector can never lie precisely in the z-direction (or any other 
direction for that matter!). If it did have a well-defined direction then it would imply that 
the electron orbit around the force center is exactly planar, violating the position-
momentum uncertainty relation for the direction perpendicular to the plane.  Consequently, 
the angular momentum vector can only be localized to somewhere (everywhere actually) 
on a cone defined by a vector of length �ℓ(ℓ + 1) ℏ with some quantized z-projection, 
𝑚𝑚ℏ.  Check out the example of the angular momentum states for ℓ = 2. 
 
 
Spin Angular Momentum 

The electron orbiting the nucleus creates a current loop and a corresponding 
magnetic moment 𝜇⃗𝜇.  In the presence of an external magnetic field 𝐵𝐵�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 (defining the z-
direction), the atom has an energy depending on the relative orientation of the field and 
magnetic moment.  This energy is given by 𝑈𝑈𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = −𝜇⃗𝜇 ∙ 𝐵𝐵�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒.  The lowest energy state 
is the one in which the magnetic field and magnetic moment are aligned (the dot product 
is positive), and the highest energy state is when they are anti-aligned.  Note that if 𝐵𝐵�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 is 
perpendicular to 𝜇⃗𝜇 then this additional energy is zero.  If one studies the transition from the 
2p state to the 1s state of Hydrogen in zero magnetic field, there is a single spectral line.  
In the presence of a strong magnetic field on the hydrogen atom this spectral line is 
observed to ‘split’ in to three closely spaced spectral lines.  These arise from the 3 different 
energies of the 2p state of Hydrogen, depending on the 𝑚𝑚 quantum number (the 1s state is 
un-split because ℓ = 𝑚𝑚 = 0 and the atom has no magnetic moment in that state).  This 
splitting of the spectral lines in a magnetic field is known as the Zeeman effect.  Our theory 
of angular momentum predicts that the states will split in to an odd number.  However, 
sometimes it is observed that there is an even number of states, and this is called the 
anomalous Zeeman effect. 

The Stern-Gerlach (SG) device uses an inhomogeneous magnetic field to exert a 
force on neutral atoms in a manner that depends on the sign and magnitude of the “z-
component” of magnetic moment (anti-parallel to the spin of the electron) of the atom.  The 
z-direction is defined by the direction of the gradient in magnetic field of the SG device 
(see Griffiths page 181).  The SG takes un-polarized atoms as input and produces spin-
polarized beams as output.  Again the SG machine can create either an odd number of 
output beams, or an even number of beams. 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Angular%20Momentum%20and%20Components.pdf
https://www.physics.umd.edu/courses/Phys402/AnlageFall21/Stern%20Gerlach%20Device.pdf
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Wolfgang Pauli tried to explain these results by positing the existence of a “two-
valuedness not describable classically.”  In other words he proposed a new quantized entity 
in the hydrogen atom that could take one of only two states.  This entity became known as 
“spin” and is crudely thought to be the quantized rotational angular momentum of the 
electron. 

The electron intrinsic angular momentum is denoted as 𝑆𝑆.  We take as a postulate 
that it has essentially the same properties as the quantum angular momentum.  We describe 
the eigenstates using a ket notation: |𝑠𝑠,𝑚𝑚𝑠𝑠⟩, satisfying the eigenvalue equations: 
𝑆̂𝑆2|𝑠𝑠,𝑚𝑚𝑠𝑠� = 𝑠𝑠(𝑠𝑠 + 1)ℏ2|𝑠𝑠,𝑚𝑚𝑠𝑠⟩, and 𝑆̂𝑆𝑧𝑧|𝑠𝑠,𝑚𝑚𝑠𝑠� = 𝑚𝑚𝑠𝑠ℏ|𝑠𝑠,𝑚𝑚𝑠𝑠⟩.  We expect that the spin 
component operators will obey the commutation relations �𝑆̂𝑆𝑥𝑥, 𝑆̂𝑆𝑦𝑦� = 𝑖𝑖ℏ𝑆̂𝑆𝑧𝑧, and all cyclic 
permutations.  There is an associated ladder of states with properties: 

1) The ladder is symmetric about 𝑚𝑚𝑠𝑠 = 0. 
2) The ladder has steps in units of ℏ. 

Note that there are total of 2𝑠𝑠 + 1 steps in the ladder, which is an even number for the 
allowed values of 𝑠𝑠 in the hydrogen atom.  In general though, 𝑠𝑠 can be integer or half-
integer. 

We can also define raising and lowering operators for moving on the ladder of 
states.  These are defined as 𝑆̂𝑆± = 𝑆̂𝑆𝑥𝑥 ± 𝑖𝑖𝑆̂𝑆𝑦𝑦, and they have this effect on the spin 
eigenstates: 𝑆̂𝑆±|𝑠𝑠,𝑚𝑚𝑠𝑠⟩ = ℏ�𝑠𝑠(𝑠𝑠 + 1) −𝑚𝑚𝑠𝑠(𝑚𝑚𝑠𝑠 ± 1) |𝑠𝑠,𝑚𝑚𝑠𝑠 ± 1⟩.  Note that trying to 
promote to a state above the top of the ladder, or below the bottom of the ladder, results in 
a 0 wavefunction (verified by putting in 𝑚𝑚𝑠𝑠 = ±𝑠𝑠 in the pre-factor). 

The spin-1/2 system is the prototype of all 2-level quantum systems.  It is the 
quintessential quantum system that is the basis for quantum information science.  A two-
level system has basis states |0⟩ and |1⟩, and an arbitrary superposition is represented by 
|Ψ⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩.  In the spin-1/2 case we have basis states | 1

2
, + 1

2
� and | 1

2
,−1

2
�, 

representing the states with 𝑠𝑠 = 1
2
 and 𝑚𝑚𝑠𝑠 = ± 1

2
.  The arbitrary super-position is given by 

|Ψ⟩ = 𝛼𝛼| 1
2

, + 1
2
� + 𝛽𝛽 | 1

2
,−1

2
�, or going over to a column vector format, |Ψ⟩ = 𝛼𝛼 �1

0� +

𝛽𝛽 �0
1�.  In this column vector format, all operators become matrices.  You can verify that 

the following matrix versions of the operators give the correct eigenvalues,  

𝑆̂𝑆2 =
3
4
ℏ2 �1 0

0 1� 

𝑆̂𝑆𝑧𝑧 =
ℏ
2
�1 0

0 −1� =
ℏ
2
𝜎𝜎𝑧𝑧 

𝑆̂𝑆𝑥𝑥 =
ℏ
2
�0 1

1 0� =
ℏ
2
𝜎𝜎𝑥𝑥 

 

𝑆̂𝑆𝑦𝑦 =
ℏ
2
�0 −𝑖𝑖
𝑖𝑖 0 � =

ℏ
2
𝜎𝜎𝑦𝑦 

 
Where the 𝜎𝜎𝑖𝑖 are the famous Pauli spin matrices.  The Pauli spin matrices obey the 
commutation relations like the spin components.   One can define a vector of Pauli spin 
matrices as 𝜎⃗𝜎� = �𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧�, which can be used to represent the spin operator as 𝑆̂𝑆 = ℏ

2
𝜎⃗𝜎�. 
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Perturbation Theory 
The point of perturbation theory is to form an approximate solution for the 

eigenvalues and eigenfunctions of a complicated problem that is closely related to an 
exactly solved problem.  In perturbation theory we start with an ‘unperturbed’ 
Hamiltonian 0Η  for which we can find the exact eigenvalues 0

nE and eigenfunctions 0
nψ : 

 0000
nnn E ψψ =Η        (1) 

 All of the QM problems that we solved in Phys401 are now going to be called 
“zeroth-order problems/solutions.”  We are interested in solving another problem with a 
very similar Hamiltonian '0 Η+Η=Η λ , where 'Η is called the perturbing Hamiltonian, 
and 1<<λ  is a small parameter to remind us that the perturbation should be “small.”  
(Later we will take 1=λ and replace it with a “smallness” condition on the perturbing 
Hamiltonian 'H .)  The exact solution to this problem involves new eigenvalues and 
eigenfunctions: 
  nnn E ψψ =Η         (2) 
 We want to solve this Schrodinger equation for the new eigenvalues 𝐸𝐸𝑛𝑛 and 
eigenfunctions 𝜓𝜓𝑛𝑛.  The purpose of perturbation theory is to find approximate 
expressions for the new eigenvalues nE and eigenfunctions nψ  in terms of the eigenvalues 
and eigenfunctions of the unperturbed problem, and the perturbing Hamiltonian.   
 


